metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A zigzag chain structure in *catena*poly[[[tetra- μ -acetamidato- $\kappa^4 N$:O;- $\kappa^4 O$:N-dirhodium(II,III)]- μ -chloro] methanol solvate]

Masahiro Ebihara* and Yasuhiro Fuma

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan Correspondence e-mail: ebihara@apchem.gifu-u.ac.jp

Received 29 August 2006 Accepted 29 September 2006 Online 31 October 2006

In { $[Rh_2(C_2H_4NO)_4Cl]\cdot CH_3OH$ }, the cationic dirhodium complex and bridging chloro ligands form a one-dimensional zigzag chain, $[Rh_2(acam)_4(\mu$ -Cl)] (Hacam is acetamide). There is a large difference between the two Rh-Cl distances [2.6076 (14) and 2.5027 (14) Å]. Neighboring chains are connected by two N-H···O hydrogen bonds per link between the amidate ligands.

Comment

A halide-bridged one-dimensional chain is commonly observed in structures with metal-metal-bonded paddlewheel complexes, such as K[Mo₂(O₂CH)₄Cl] (Robbins & Martin, 1984), [Pt₂(S₂CR)₄I] (Bellitto et al., 1983; Kitagawa et al., 2001; Mitsumi et al., 2002) and $[Ru_2(O_2CR)_4X]$ (X = Cl and Br; Angaridis, 2005). The chain in $K[Mo_2(O_2CH)_4Cl]$ is a zigzag one, that in $[Pt_2(S_2CR)_4I]$ is linear and $[Ru_2(O_2CR)_4X]$ contains both types. We have reported assemblies of acetamidate-bridged dirhodium paddlewheel complexes with halide linkers, viz. one-dimensional chain structures in $\{[Rh_2(acam)_4(\mu-X)] \cdot H_2O\}_n$ (Hacam is acetamide; X = Cl, Brand I; n = 0, 2, 3 and 7; Yang *et al.*, 2000, 2001), a twodimensional honeycomb structure in $[{Rh_2(acam)_4}_3(\mu_3 -$ Cl)₂]·4H₂O (Takazaki et al., 2003) and a three-dimensional diamondoid structure in $[{Rh_2(acam)_4}_2(\mu_4-I)] \cdot 6H_2O$ (Fuma et al., 2004). In the zigzag chain structure of $\{[Rh_2(acam)_4(\mu -$ X]·H₂O]_n, the Rh-Cl-Rh angle varies with the hydrogen bonding involving the water molecules. We have attempted to synthesize a chain structure with solvent molecules other than water. In this paper, we report the zigzag chain structure of $\{[Rh_2(acam)_4(\mu-Cl)]\cdot CH_3OH\}_n, (I).$

The structure of (I) is shown in Fig. 1. There are one independent $[Rh_2(acam)_4Cl]$ unit and one methanol molecule in the asymmetric unit. The bond distances in the $[Rh_2-(acam)_4]$ skeleton are similar to those observed previously for

the cationic [Rh₂(acam)₄] unit (Yang *et al.*, 2000, 2001, 2006; Ebihara & Fuma, 2006; Baranovskii *et al.*, 1986). The [Rh₂(acam)₄Cl] unit forms an infinite zigzag chain structure (Fig. 2) as in [Rh₂(acam)₄(μ -Cl)] and [Rh₂(acam)₄(μ -Cl)]-7H₂O (Yang *et al.*, 2000, 2001).

In the reported zigzag chain structures of $[M_2L_4X]$ [M = Ruand Rh, $L = O_2 CR$ and HN(O)CR, and X = Cl, Br and I; Bennett et al., 1969; Togano et al., 1980; Kimura et al., 1982; Chakravarty & Cotton, 1985; Chakravarty et al., 1985; Das & Chakravarty, 1991; Abe et al., 1992; Barral et al., 1998, 1999, 2000, 2004; Cukiernik et al., 1998; Yang et al., 2000, 2001], the dimetal unit usually lies on an inversion center or on a twofold axis. For example, in the chain structure of $[Rh_2(acam)_4(\mu -$ Cl)] (Yang et al., 2001), which crystallizes in C2/c, the dirhodium unit lies on an inversion center and the Cl atom lies on a twofold axis. In the structure of $[Ru_2(O_2CC_6H_4OMe)_4Cl]$ (Das & Chakravarty, 1991), there are three independent diruthenium units, of which two lie on inversion centers and one occupies a general position. In the structure of (I), the chain is propagated along the c axis with each unit of the complex connected to adjacent units generated by the c-glide plane at $y = \frac{1}{4}$. Compound (I) is the first example of a zigzag chain

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x, $-y + \frac{1}{2}, -\frac{1}{2} + z$.]

constructed from one independent paddlewheel complex that does not have any symmetry.

The Rh–Cl–Rh angles in $[Rh_2(acam)_4(\mu$ -Cl)] and $[Rh_2(acam)_4(\mu$ -Cl)]·7H₂O are 115.48 (10) and 153.50 (6)°, respectively. Since the corresponding angle in (I) is 114.59 (5)°, the chain structure in (I) more closely resembles that in $[Rh_2(acam)_4(\mu$ -Cl)]. Hydrogen bonds from the NH groups of the acam ligands to the O atoms of the next complexes along the chain $[N1\cdots O4^i \text{ and } N3\cdots O2^{ii};$ symmetry codes: (i) x, $-y + \frac{1}{2}, z - \frac{1}{2};$ (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2};$ Table 2] also support the chain structure, as was observed in $[Rh_2(acam)_4(\mu$ -Cl)] (Yang *et al.*, 2001). The methanol molecule lies beside the chain, accepting a hydrogen bond from an N atom of an acam ligand (N2) and donating a hydrogen bond to an O atom of a neighboring complex (O2ⁱⁱ).

The Rh–Rh–Cl angles in (I) (Table 1) are slightly more bent than that in [Rh₂(acam)₄(μ -Cl)] [174.52 (4)°]. The Rh1– Cl1 and Rh2–Cl1ⁱ distances (Table 1) are both different from the corresponding value in [Rh₂(acam)₄(μ -Cl)] [2.581 (1) Å]. The difference between these Rh–Cl distances is very large (*ca* 0.1 Å). In the previously reported chain structures, the largest differences (*ca* 0.04 Å) between *M*–Cl bonds were observed in [Ru₂{HN(O)CC₆H₄R}₄(μ -Cl)] [*R* = H (Chakravarty & Cotton, 1985) and *R* = Cl (Chakravarty *et al.*, 1985)]. The long–short pattern of the *M*–Cl bonds in the Cl–*MM*– Cl–*MM*–Cl unit is long–long–short–short for [Ru₂{HN(O)-CC₆H₄R}₄(μ -Cl)], since two independent diruthenium units lie on inversion centers, but long–short–long–short for (I).

The chains are mutually parallel and are connected to each other by a pair of hydrogen bonds $[N4 \cdots O3^{iii} \text{ and } N4^{iii} \cdots O3;$ symmetry code: (iii) -x + 1, -y + 1, -z + 1]. These interchain hydrogen bonds were not observed in other chain structures with amidate-bridged paddlewheel complexes (Chakravarty & Cotton, 1985; Chakravarty *et al.*, 1985; Yang *et al.*, 2000, 2001).

Figure 2

The crystal structure of (I). Hydrogen bonds are drawn as thin lines. [Symmetry codes: (i) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1.]

 $[\rm Rh_2(acam)_4(\rm H_2O)_2]\rm CIO_4$ was prepared according to the method described by Baranovskii *et al.* (1986). Into a methanol solution of $[\rm Rh_2(acam)_4(\rm H_2O)_2]\rm CIO_4$ (3.1 mmol 1^{-1}), a methanol solution of CoCl_2·6H_2O (0.21 mol 1^{-1}) was diffused slowly. After several days, brown crystals of (I) were obtained.

Z = 4

 $D_x = 2.189 \text{ Mg m}^{-3}$

 $0.30\,\times\,0.10\,\times\,0.10$ mm

12335 measured reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0256P)^2$

where $P = (F_{0}^{2} + 2F_{c}^{2})/3$

+ 3.6476P]

 $\Delta \rho_{\rm max} = 0.95 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.80 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

3496 independent reflections

3246 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 2.35 \text{ mm}^{-1}$ T = 173 (2) K

Prism, brown

 $R_{\rm int} = 0.034$

 $\theta_{\rm max} = 27.5^{\circ}$

Crystal data

[Rh ₂ (C ₂ H ₄ NO) ₄ Cl]·CH ₄ O
$M_r = 505.56$
Monoclinic, $P2_1/c$
$a = 8.601 (4) \text{ Å}_{-}$
b = 14.254 (7) Å
c = 12.664 (7) Å
$\beta = 98.854 \ (5)^{\circ}$
$V = 1534.1 (13) \text{ Å}^3$

Data collection

- Rigaku/MSC Mercury CCD diffractometer ω scans Absorption correction: integration (NUMABS; Higashi, 1999)
- $T_{\rm min} = 0.624, \ T_{\rm max} = 0.755$

Refinement

- Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$
- $wR(F^2) = 0.071$ S = 1.17 3496 reflections 198 parameters H atoms treated by a mixture of independent and constrained

refinement

Table 1

Selected geometric parameters (Å, °).

Rh1-Rh2	2.4247 (11)	Rh2-Cl1 ⁱ	2.5027 (14)
Rh1-Cl1	2.6076 (14)	Rh2-O2	2.057 (3)
Rh1-O1	2.026 (3)	Rh2-O3	2.051 (3)
Rh1-O4	2.052 (3)	Rh2-N1	1.978 (3)
Rh1-N2	1.975 (3)	Rh2-N4	1.968 (3)
Rh1-N3	1.979 (3)		
Rh2-Rh1-Cl1	170.82 (2)	Rh2 ⁱⁱ -Cl1-Rh1	114.59 (5)
Rh1-Rh2-Cl1 ⁱ	173.94 (2)		
D1-Rh1-Rh2-N1	1.08 (12)	N3-Rh1-Rh2-O3	3.73 (12)
N2-Rh1-Rh2-O2	3.40 (12)	O4-Rh1-Rh2-N4	5.04 (12)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

H	yd	roge	en-l	oond	geo	met	try ((A	۱, ۲	')		
---	----	------	------	------	-----	-----	-------	----	------	----	--	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$N1-H1\cdots O4^{i}$	0.88	2.30	3.180 (4)	175		
$N2 - H2 \cdot \cdot \cdot O5$	0.88	2.28	2.976 (5)	136		
N3-H3···O2 ⁱⁱ	0.88	2.43	3.251 (5)	155		
N4-H4···O3 ⁱⁱⁱ	0.88	2.45	3.277 (4)	158		
$O5-H17\cdots O2^{ii}$	0.86 (6)	2.25 (6)	3.045 (4)	155 (5)		

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1.

The positional parameters of the H atom attached to atom O5 were refined, with $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were placed in idealized positions and treated as riding atoms, with C–H distances of 0.98 Å, N–H distances of 0.88 Å, and $U_{iso}(H)$ values of $1.5U_{eq}(C)$ or $1.2U_{eq}(N)$.

metal-organic compounds

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *TEXSAN* (Rigaku/MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97* and *TEXSAN*.

This work was supported by the Research Foundation for Electrotechnology of Chubu.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3040). Services for accessing these data are described at the back of the journal.

References

- Abe, M., Sasaki, Y., Yamaguchi, T. & Ito, T. (1992). Bull. Chem. Soc. Jpn, 65, 1585–1590.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Angaridis, P. (2005). *Multiple Bonds Between Metal Atoms*, 3rd ed., edited by F. A. Cotton, C. A. Mulliro & R. A. Walton, pp. 377–430. New York: Springer Science and Business Media Inc.
- Baranovskii, I. B., Golubnichaya, M. A., Dikareva, L. M., Rotov, A. V., Shchelokov, R. N. & Porai-Koshits, M. A. (1986). *Russ. J. Inorg. Chem.* 31, 1652–1656.
- Barral, M. C., Gonzalez-Prieto, R., Jimenez-Aparicio, R., Priego, J. L., Torres, M. R. & Urbanos, F. A. (2004). *Eur. J. Inorg. Chem.* pp. 4491–4501.
- Barral, M. C., Jimenez-Aparicio, R., Perez-Quintanilla, D., Pinilla, E., Priego, J. L., Royer, E. C. & Urbanos, F. A. (1999). *Polyhedron*, 18, 371–376.
- Barral, M. C., Jimenez-Aparicio, R., Perez-Quintanilla, D., Priego, J. L., Royer, E. C., Torres, M. R. & Urbanos, F. A. (2000). *Inorg. Chem.* 39, 65–70.
- Barral, M. C., Jimenez-Aparicio, R., Priego, J. L., Royer, E. C., Urbanos, F. A. & Amador, U. (1998). *Inorg. Chem.* 37, 1413–1416.

- Bellitto, C., Flamini, A., Gastaldi, L. & Scaramuzza, L. (1983). *Inorg. Chem.* 22, 444–449.
- Bennett, M. J., Caulton, K. G. & Cotton, F. A. (1969). Inorg. Chem. 8, 1-6.
- Chakravarty, A. R. & Cotton, F. A. (1985). Polyhedron, 4, 1957–1958.
- Chakravarty, A. R., Cotton, F. A. & Tocher, D. A. (1985). Polyhedron, 4, 1097-
- 1102. Cukiernik, F. D., Luneau, D., Marchon, J.-C. & Maldivi, P. (1998). *Inorg. Chem.*
- **37**, 3698–3704. Das, B. K. & Chakravarty, A. R. (1991). *Polyhedron*, **10**, 491–494.
- Ebihara, M. & Fuma, Y. (2006). *Acta Cryst.* C62, m284–m289.
- Fuma, Y., Ebihara, M., Kutsumizu, S. & Kawamura, T. (2004). J. Am. Chem. Soc. 126, 12238–12239.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
- Laboratory, Tennessee, USA. Kimura, T., Sakurai, Y., Shima, M., Togano, T., Mukaida, M. & Nomura, T. (1982). *Bull. Chem. Soc. Jpn*, **55**, 3927–3928.
- Kitagawa, H., Nakagami, S. & Mitani, T. (2001). Synth. Met. 116, 401– 404.
- Mitsumi, M., Kitamura, K., Morinaga, A., Ozawa, Y., Kobayashi, M., Toriumi, K., Iso, Y., Kitagawa, H. & Mitani, T. (2002). Angew. Chem. Int. Ed. 41, 2767–2771.
- Molecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Robbins, G. A. & Martin, D. S. (1984). Inorg. Chem. 23, 2086–2093.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Takazaki, Y., Yang, Z., Ebihara, M., Inoue, K. & Kawamura, T. (2003). *Chem. Lett.* **32**, 120–121.
- Togano, T., Mukaida, M. & Nomura, T. (1980). Bull. Chem. Soc. Jpn, 53, 2085– 2086.
- Yang, Z., Ebihara, M. & Kawamura, T. (2006). Inorg. Chim. Acta, 349, 2465– 2471.
- Yang, Z., Ebihara, M., Kawamura, T., Okubo, T. & Mitani, T. (2001). Inorg. Chim. Acta, 321, 97–106.
- Yang, Z., Fujinami, T., Ebihara, M., Nakajima, K., Kitagawa, H. & Kawamura, T. (2000). Chem. Lett. pp. 1006–1007.