Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A zigzag chain structure in catena-poly[[[tetra- μ-acetamidato- $\kappa^{4} N$: O;$\kappa^{4} O: N$-dirhodium(II,III)]- μ-chloro] methanol solvate]

Masahiro Ebihara* and Yasuhiro Fuma

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
Correspondence e-mail: ebihara@apchem.gifu-u.ac.jp
Received 29 August 2006
Accepted 29 September 2006
Online 31 October 2006

In $\left\{\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4} \mathrm{Cl}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}\right\}_{n}$, the cationic dirhodium complex and bridging chloro ligands form a one-dimensional zigzag chain, $\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu-\mathrm{Cl})\right]$ (Hacam is acetamide). There is a large difference between the two $\mathrm{Rh}-\mathrm{Cl}$ distances [2.6076 (14) and $2.5027(14) \AA$). Neighboring chains are connected by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds per link between the amidate ligands.

Comment

A halide-bridged one-dimensional chain is commonly observed in structures with metal-metal-bonded paddlewheel complexes, such as $\mathrm{K}\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{4} \mathrm{Cl}\right]$ (Robbins \& Martin, 1984), $\left[\mathrm{Pt}_{2}\left(\mathrm{~S}_{2} \mathrm{CR}\right)_{4} \mathrm{I}\right]$ (Bellitto et al., 1983; Kitagawa et al., 2001; Mitsumi et al., 2002) and $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4} X\right](X=\mathrm{Cl}$ and Br ; Angaridis, 2005). The chain in $\mathrm{K}\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{4} \mathrm{Cl}\right]$ is a zigzag one, that in $\left[\mathrm{Pt}_{2}\left(\mathrm{~S}_{2} \mathrm{CR}\right)_{4} \mathrm{I}\right]$ is linear and $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4} X\right]$ contains both types. We have reported assemblies of acet-amidate-bridged dirhodium paddlewheel complexes with halide linkers, viz. one-dimensional chain structures in $\left\{\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}(\mu-X)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (Hacam is acetamide; $X=\mathrm{Cl}, \mathrm{Br}$ and I; $n=0,2,3$ and 7; Yang et al., 2000, 2001), a twodimensional honeycomb structure in $\left[\left\{\mathrm{Rh}_{2}(\mathrm{acam})_{4}\right\}_{3}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{Cl})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Takazaki et al., 2003) and a three-dimensional diamondoid structure in $\left[\left\{\mathrm{Rh}_{2}(\text { acam })_{4}\right\}_{2}\left(\mu_{4}-\mathrm{I}\right)\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Fuma et al., 2004). In the zigzag chain structure of $\left\{\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}(\mu\right.\right.$ $\left.X)] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Rh}-\mathrm{Cl}-\mathrm{Rh}$ angle varies with the hydrogen bonding involving the water molecules. We have attempted to synthesize a chain structure with solvent molecules other than water. In this paper, we report the zigzag chain structure of $\left\{\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu-\mathrm{Cl})\right] \cdot \mathrm{CH}_{3} \mathrm{OH}\right\}_{n}$, (I).

The structure of (I) is shown in Fig. 1. There are one independent $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4} \mathrm{Cl}\right]$ unit and one methanol molecule in the asymmetric unit. The bond distances in the $\left[\mathrm{Rh}_{2^{-}}\right.$ (acam) ${ }_{4}$] skeleton are similar to those observed previously for
the cationic $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\right]$ unit (Yang et al., 2000, 2001, 2006; Ebihara \& Fuma, 2006; Baranovskii et al., 1986). The $\left[\mathrm{Rh}_{2}(\text { acam })_{4} \mathrm{Cl}\right]$ unit forms an infinite zigzag chain structure (Fig. 2) as in $\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}(\mu-\mathrm{Cl})\right]$ and $\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}(\mu-\mathrm{Cl})\right]$]$7 \mathrm{H}_{2} \mathrm{O}$ (Yang et al., 2000, 2001).

In the reported zigzag chain structures of $\left[M_{2} L_{4} X\right][M=\mathrm{Ru}$ and $\mathrm{Rh}, L=\mathrm{O}_{2} \mathrm{C} R$ and $\mathrm{HN}(\mathrm{O}) \mathrm{C} R$, and $X=\mathrm{Cl}, \mathrm{Br}$ and I ; Bennett et al., 1969; Togano et al., 1980; Kimura et al., 1982; Chakravarty \& Cotton, 1985; Chakravarty et al., 1985; Das \& Chakravarty, 1991; Abe et al., 1992; Barral et al., 1998, 1999, 2000, 2004; Cukiernik et al., 1998; Yang et al., 2000, 2001], the dimetal unit usually lies on an inversion center or on a twofold axis. For example, in the chain structure of $\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu\right.$ $\mathrm{Cl})$] (Yang et al., 2001), which crystallizes in $C 2 / c$, the dirhodium unit lies on an inversion center and the Cl atom lies on a twofold axis. In the structure of $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)_{4} \mathrm{Cl}\right]$ (Das \& Chakravarty, 1991), there are three independent diruthenium units, of which two lie on inversion centers and one occupies a general position. In the structure of (I), the chain is propagated along the c axis with each unit of the complex connected to adjacent units generated by the c-glide plane at $y=\frac{1}{4}$. Compound (I) is the first example of a zigzag chain

Figure 1
The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x, $-y+\frac{1}{2},-\frac{1}{2}+z$.]
constructed from one independent paddlewheel complex that does not have any symmetry.

The $\mathrm{Rh}-\mathrm{Cl}-\mathrm{Rh}$ angles in $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}(\mu-\mathrm{Cl})\right]$ and $\left[\mathrm{Rh}_{2^{-}}\right.$ (acam) $\left.)_{4}(\mu-\mathrm{Cl})\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ are $115.48(10)$ and $153.50(6)^{\circ}$, respectively. Since the corresponding angle in (I) is $114.59(5)^{\circ}$, the chain structure in (I) more closely resembles that in $\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu-\mathrm{Cl})\right]$. Hydrogen bonds from the NH groups of the acam ligands to the O atoms of the next complexes along the chain $\left[\mathrm{N} 1 \cdots \mathrm{O} 4^{\mathrm{i}}\right.$ and $\mathrm{N} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$; symmetry codes: (i) x, $-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; Table 2] also support the chain structure, as was observed in $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}(\mu-\mathrm{Cl})\right]$ (Yang et al., 2001). The methanol molecule lies beside the chain, accepting a hydrogen bond from an N atom of an acam ligand (N 2) and donating a hydrogen bond to an O atom of a neighboring complex ($\mathrm{O} 2^{\mathrm{ii}}$).

The $\mathrm{Rh}-\mathrm{Rh}-\mathrm{Cl}$ angles in (I) (Table 1) are slightly more bent than that in $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}(\mu-\mathrm{Cl})\right]\left[174.52(4)^{\circ}\right]$. The $\mathrm{Rh} 1-$ Cl 1 and $\mathrm{Rh} 2-\mathrm{Cl} 1^{\mathrm{i}}$ distances (Table 1) are both different from the corresponding value in $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}(\mu-\mathrm{Cl})\right][2.581(1) \AA]$. The difference between these $\mathrm{Rh}-\mathrm{Cl}$ distances is very large (ca $0.1 \AA$). In the previously reported chain structures, the largest differences (ca $0.04 \AA$) between $M-\mathrm{Cl}$ bonds were observed in $\left[\mathrm{Ru}_{2}\left\{\mathrm{HN}(\mathrm{O}) \mathrm{CC}_{6} \mathrm{H}_{4} R\right\}_{4}(\mu-\mathrm{Cl})\right][R=\mathrm{H}$ (Chakravarty \& Cotton, 1985) and $R=\mathrm{Cl}$ (Chakravarty et al., 1985)]. The long-short pattern of the $M-\mathrm{Cl}$ bonds in the $\mathrm{Cl}-M M-$ $\mathrm{Cl}-M M-\mathrm{Cl}$ unit is long-long-short-short for $\left[\mathrm{Ru}_{2}\{\mathrm{HN}(\mathrm{O})\right.$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} R\right\}_{4}(\mu-\mathrm{Cl})\right]$, since two independent diruthenium units lie on inversion centers, but long-short-long-short for (I).

The chains are mutually parallel and are connected to each other by a pair of hydrogen bonds [$\mathrm{N} 4 \cdots \mathrm{O} 3^{\mathrm{iii}}$ and $\mathrm{N} 4{ }^{\text {iiii }} \ldots \mathrm{O} 3$; symmetry code: (iii) $-x+1,-y+1,-z+1]$. These interchain hydrogen bonds were not observed in other chain structures with amidate-bridged paddlewheel complexes (Chakravarty \& Cotton, 1985; Chakravarty et al., 1985; Yang et al., 2000, 2001).

Figure 2
The crystal structure of (I). Hydrogen bonds are drawn as thin lines. [Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1,-y+1$, $-z+1$.]

Experimental

$\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$ was prepared according to the method described by Baranovskii et al. (1986). Into a methanol solution of $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}\left(3.1 \mathrm{mmol} \mathrm{l}^{-1}\right)$, a methanol solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(0.21 \mathrm{~mol} \mathrm{l}^{-1}\right)$ was diffused slowly. After several days, brown crystals of (I) were obtained.

Crystal data
$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4} \mathrm{Cl}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=505.56$
Monoclinic, $P 2_{1} / c$
$a=8.601$ (4) \AA
$b=14.254$ (7) \AA
$c=12.664$ (7) \AA
$\beta=98.854$ (5) ${ }^{\circ}$
$V=1534.1(13) \AA^{3}$

Data collection

Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: integration (NUMABS; Higashi, 1999) $T_{\text {min }}=0.624, T_{\text {max }}=0.755$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.071$
$S=1.17$
3496 reflections
198 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
Z=4
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.189 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=2.35 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, brown
$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$

12335 measured reflections
3496 independent reflections 3246 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0256 P)^{2}\right.} \\
&+3.6476 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.000 \\
& \Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

Rh1-Rh2	$2.4247(11)$	$\mathrm{Rh} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$2.5027(14)$
$\mathrm{Rh} 1-\mathrm{Cl} 1$	$2.6076(14)$	$\mathrm{Rh} 2-\mathrm{O} 2$	$2.057(3)$
$\mathrm{Rh} 1-\mathrm{O} 1$	$2.026(3)$	$\mathrm{Rh} 2-\mathrm{O} 3$	$2.051(3)$
$\mathrm{Rh} 1-\mathrm{O} 4$	$2.052(3)$	$\mathrm{Rh} 2-\mathrm{N} 1$	$1.978(3)$
$\mathrm{Rh} 1-\mathrm{N} 2$	$1.975(3)$	$\mathrm{Rh} 2-\mathrm{N} 4$	$1.968(3)$
$\mathrm{Rh} 1-\mathrm{N} 3$	$1.979(3)$		
$\mathrm{Rh} 2-\mathrm{Rh} 1-\mathrm{Cl} 1$	$170.82(2)$	$\mathrm{Rh} 2^{\mathrm{ii}}-\mathrm{Cl} 1-\mathrm{Rh} 1$	$114.59(5)$
$\mathrm{Rh} 1-\mathrm{Rh} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$173.94(2)$		
$\mathrm{O} 1-\mathrm{Rh} 1-\mathrm{Rh} 2-\mathrm{N} 1$	$1.08(12)$	$\mathrm{N} 3-\mathrm{Rh} 1-\mathrm{Rh} 2-\mathrm{O} 3$	$3.73(12)$
$\mathrm{N} 2-\mathrm{Rh} 1-\mathrm{Rh} 2-\mathrm{O} 2$	$3.40(12)$	$\mathrm{O} 4-\mathrm{Rh} 1-\mathrm{Rh} 2-\mathrm{N} 4$	$5.04(12)$
Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2} ;$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.30	$3.180(4)$	175
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.28	$2.976(5)$	136
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.88	2.43	$3.251(5)$	155
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{3 i}$	0.88	2.45	$3.277(4)$	158
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 17 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.86(6)$	$2.25(6)$	$3.045(4)$	$155(5)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z+1$.

The positional parameters of the H atom attached to atom O 5 were refined, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in idealized positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.88 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$ or $1.2 U_{\text {eq }}(\mathrm{N})$.

metal-organic compounds

Data collection: CrystalClear (Molecular Structure Corporation \& Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

This work was supported by the Research Foundation for Electrotechnology of Chubu.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3040). Services for accessing these data are described at the back of the journal.

References

Abe, M., Sasaki, Y., Yamaguchi, T. \& Ito, T. (1992). Bull. Chem. Soc. Jpn, 65, 1585-1590.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Angaridis, P. (2005). Multiple Bonds Between Metal Atoms, 3rd ed., edited by F. A. Cotton, C. A. Mulliro \& R. A. Walton, pp. 377-430. New York: Springer Science and Business Media Inc.
Baranovskii, I. B., Golubnichaya, M. A., Dikareva, L. M., Rotov, A. V., Shchelokov, R. N. \& Porai-Koshits, M. A. (1986). Russ. J. Inorg. Chem. 31, 1652-1656.
Barral, M. C., Gonzalez-Prieto, R., Jimenez-Aparicio, R., Priego, J. L., Torres, M. R. \& Urbanos, F. A. (2004). Eur. J. Inorg. Chem. pp. 4491-4501

Barral, M. C., Jimenez-Aparicio, R., Perez-Quintanilla, D., Pinilla, E., Priego, J. L., Royer, E. C. \& Urbanos, F. A. (1999). Polyhedron, 18, 371-376.

Barral, M. C., Jimenez-Aparicio, R., Perez-Quintanilla, D., Priego, J. L., Royer, E. C., Torres, M. R. \& Urbanos, F. A. (2000). Inorg. Chem. 39, 65-70.

Barral, M. C., Jimenez-Aparicio, R., Priego, J. L., Royer, E. C., Urbanos, F. A. \& Amador, U. (1998). Inorg. Chem. 37, 1413-1416.

Bellitto, C., Flamini, A., Gastaldi, L. \& Scaramuzza, L. (1983). Inorg. Chem. 22, 444-449.
Bennett, M. J., Caulton, K. G. \& Cotton, F. A. (1969). Inorg. Chem. 8, 1-6.
Chakravarty, A. R. \& Cotton, F. A. (1985). Polyhedron, 4, 1957-1958.
Chakravarty, A. R., Cotton, F. A. \& Tocher, D. A. (1985). Polyhedron, 4, 10971102.

Cukiernik, F. D., Luneau, D., Marchon, J.-C. \& Maldivi, P. (1998). Inorg. Chem. 37, 3698-3704.
Das, B. K. \& Chakravarty, A. R. (1991). Polyhedron, 10, 491-494.
Ebihara, M. \& Fuma, Y. (2006). Acta Cryst. C62, m284-m289.
Fuma, Y., Ebihara, M., Kutsumizu, S. \& Kawamura, T. (2004). J. Am. Chem. Soc. 126, 12238-12239.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kimura, T., Sakurai, Y., Shima, M., Togano, T., Mukaida, M. \& Nomura, T. (1982). Bull. Chem. Soc. Jpn, 55, 3927-3928.

Kitagawa, H., Nakagami, S. \& Mitani, T. (2001). Synth. Met. 116, 401404.

Mitsumi, M., Kitamura, K., Morinaga, A., Ozawa, Y., Kobayashi, M., Toriumi, K., Iso, Y., Kitagawa, H. \& Mitani, T. (2002). Angew. Chem. Int. Ed. 41, 2767-2771.
Molecular Structure Corporation \& Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Robbins, G. A. \& Martin, D. S. (1984). Inorg. Chem. 23, 2086-2093.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Takazaki, Y., Yang, Z., Ebihara, M., Inoue, K. \& Kawamura, T. (2003). Chem. Lett. 32, 120-121.
Togano, T., Mukaida, M. \& Nomura, T. (1980). Bull. Chem. Soc. Jpn, 53, 20852086.

Yang, Z., Ebihara, M. \& Kawamura, T. (2006). Inorg. Chim. Acta, 349, $2465-$ 2471.

Yang, Z., Ebihara, M., Kawamura, T., Okubo, T. \& Mitani, T. (2001). Inorg. Chim. Acta, 321, 97-106.
Yang, Z., Fujinami, T., Ebihara, M., Nakajima, K., Kitagawa, H. \& Kawamura, T. (2000). Chem. Lett. pp. 1006-1007.

